
Manufacturing / Printing System Simulator

A Design Fest Proposal

Designers of real-time embedded software are often faced with a serious problem. The
physical system that their software will control is being designed concurrently and is
therefore not available as a test platform for the software. Add to this the usual dangers of
running untested software on systems that have inherent safety and property damage
risks, and the arguments in favor of simulation environments become quite strong.

An additional use of hardware simulation is in an academic setting where resources do
not permit the availability of the physical system to be controlled. Simulation is already a
very popular approach in school-based science and engineering laboratories.

Design Fest teams choosing this assignment will design a general-purpose simulator for a
mechanical process. This proposal addresses a specific domain within embedded
systems: that where software must control the transport of physical objects through
various way points where physical actions are applied to them. Some examples from this
domain include
o Manufacturing assembly lines
o Printing systems
o Railroads1

Software is needed to simulate the physical system so that the software being designed to
control that system can be empirically tested. The control software is not part of this
proposal.

1 A rail system may not be the ideal application since control software does not actually control the trains
themselves. On the other hand, model railroading might be an ideal application.

Figure 1. High-Level System Architectures

System Artifact Specification
The environment being simulated is a set of possibly converging and diverging paths on
which objects travel. It can be viewed as a graph where the nodes represent way points
and the edges represent travel routes (perhaps conveyor belts) between the way points.

Figure 2. Sample Simulation System

Controller
(Software)

Simulator
(Software)

HW
dri-
vers

Controlled
System

(Hardware)

desti-
nation

source

desti-
nation

way point

source/destination

sensor

The edges have travel times. The times are probabilistic because the physical devices
involved may sometimes slow down or even speed up the rate of travel of objects along
them. There is also a probability that a path segment will fail completely, i.e., halt.2 The
way points are control points. Upon commands from the software, objects sitting in way
points have their state modified in some way (a lid gets put on a can; ink is printed on a
sheet of paper, etc.). Some way points cause their objects to stop and wait there for
awhile while the action is being applied. Control software would have to halt and resume
the travel of the objects. The time needed for the state change action to be applied is
again probabilistic.

Some of the way points act as physical switches, directing arriving objects to one of
several outgoing paths. Others passively accept incoming objects from many different
paths without external control. However, they must be able to report collisions.

Objects have a length expressed as the difference in time between when the leading and
the trailing edges of the object arrive at a way station or sensor. Sensors may be placed
anywhere in the system – paths or way stations. They report the presence or absence of
objects at their locations.

Finally, there are special places at the endpoints of paths. The source points are pre-filled
with objects and are capable of sending one object at a time out to the paths to which they
are connected. The destination points accumulate objects. Both kinds can report their
current stocks. (Source and destination points might actually be represented as special
cases of way points.)

Control Interface
In a real system with embedded software control, there are various hardware interfaces
that allow information about the system to flow into the control software and allow
control signals to go out. For the simulator, that hardware-dependent part of the software
(called the HW Drivers in Figure 1) will not be used. Designers must choose an interface
more amenable to a concurrently running software system on the other side. This implies
some kind of inter-process or intra-process (inter-thread) communication. Network
protocol – based communication may or may not be appropriate depending on response
time requirements. Many distributed real-time control systems employ special network
protocols designed to guarantee, or at least minimize the variation in, response time.

2 Note that it is not the simulator's job to recover from, or even detect this situation. The simulator simply
stops sending sensor reports to the controller; the controller then deduces the problem and recovers.

